10 research outputs found

    Addressing the challenges posed by human machine interfaces based on force sensitive resistors for powered prostheses

    Get PDF
    Despite the advancements in the mechatronics aspect of prosthetic devices, prostheses control still lacks an interface that satisfies the needs of the majority of users. The research community has put great effort into the advancements of prostheses control techniques to address users’ needs. However, most of these efforts are focused on the development and assessment of technologies in the controlled environments of laboratories. Such findings do not fully transfer to the daily application of prosthetic systems. The objectives of this thesis focus on factors that affect the use of Force Myography (FMG) controlled prostheses in practical scenarios. The first objective of this thesis assessed the use of FMG as an alternative or synergist Human Machine Interface (HMI) to the more traditional HMI, i.e. surface Electromyography (sEMG). The assessment for this study was conducted in conditions that are relatively close to the real use case of prosthetic applications. The HMI was embedded in the custom prosthetic prototype that was developed for the pilot participant of the study using an off-the-shelf prosthetic end effector. Moreover, prostheses control was assessed as the user moved their limb in a dynamic protocol.The results of the aforementioned study motivated the second objective of this thesis: to investigate the possibility of reducing the complexity of high density FMG systems without sacrificing classification accuracies. This was achieved through a design method that uses a high density FMG apparatus and feature selection to determine the number and location of sensors that can be eliminated without significantly sacrificing the system’s performance. The third objective of this thesis investigated two of the factors that contribute to increased errors in force sensitive resistor (FSR) signals used in FMG controlled prostheses: bending of force sensors and variations in the volume of the residual limb. Two studies were conducted that proposed solutions to mitigate the negative impact of these factors. The incorporation of these solutions into prosthetic devices is discussed in these studies.It was demonstrated that FMG is a promising HMI for prostheses control. The facilitation of pattern recognition with FMG showed potential for intuitive prosthetic control. Moreover, a method for the design of a system that can determine the required number of sensors and their locations on each individual to achieve a simpler system with comparable performance to high density FMG systems was proposed and tested. The effects of the two factors considered in the third objective were determined. It was also demonstrated that the proposed solutions in the studies conducted for this objective can be used to increase the accuracy of signals that are commonly used in FMG controlled prostheses

    Bicycle Smart Helmet

    Get PDF
    Cycle Bright Solutions believe that the current helmets can greatly benefit from the advancements of technology by the creation of a smart helmet. We aim to create a helmet which will increase the safety of riders by making it easier for cars and cyclists to communicate with each other. The conventional hand signals are inadequate at best and downright dangerous at worst. They require the cyclist to remove one hand from the handle bar to perform hand motions that might throw them off balance and even then, they may be not even be feasible at times due to variety of factors such as grade or conditions of the road. Furthermore, these hand signals can be hard to see in low light conditions. To address these issues, the Cycle Bright Solutions’ helmets will feature an RGB LED panel at the back of the helmet that can display left and right signals as well as brake lights to warn the other cars in a timely manner. Thus, the Smart Helmet will help the riders to signal their directions at any time of day without requiring them to remove their hands from the handlebar

    Investigation of Regression Methods for Reduction of Errors Caused by Bending of FSR-Based Pressure Sensing Systems Used for Prosthetic Applications

    No full text
    The pressure map at the interface of a prosthetic socket and a residual limb contains information that can be used in various prosthetic applications including prosthetic control and prosthetic fitting. The interface pressure is often obtained using force sensitive resistors (FSRs). However, as reported by multiple studies, accuracies of the FSR-based pressure sensing systems decrease when sensors are bent to be positioned on a limb. This study proposes the use of regression-based methods for sensor calibration to address this problem. A sensor matrix was placed in a pressure chamber as the pressure was increased and decreased in a cyclic manner. Sensors’ responses were assessed when the matrix was placed on a flat surface or on one of five curved surfaces with various curvatures. Three regression algorithms, namely linear regression (LR), general regression neural network (GRNN), and random forest (RF), were assessed. GRNN was selected due to its performance. Various error compensation methods using GRNN were investigated and compared to improve instability of sensors’ responses. All methods showed improvements in results compared to the baseline. Developing a different model for each of the curvatures yielded the best results. This study proved the feasibility of using regression-based error compensation methods to improve the accuracy of mapping sensor readings to pressure values. This can improve the overall accuracy of FSR-based sensory systems used in prosthetic applications

    Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device

    No full text
    Portable and wearable devices are becoming increasingly common in our daily lives. In this study, we examined the impact of anxiety-inducing videos on biosignals, particularly electrocardiogram (ECG) and respiration (RES) signals, that were collected using a portable device. Two psychological scales (Beck Anxiety Inventory and Hamilton Anxiety Rating Scale) were used to assess overall anxiety before induction. The data were collected at Simon Fraser University from participants aged 18–56, all of whom were healthy at the time. The ECG and RES signals were collected simultaneously while participants continuously watched video clips that stimulated anxiety-inducing (negative experience) and non-anxiety-inducing events (positive experience). The ECG and RES signals were recorded simultaneously at 500 Hz. The final dataset consisted of psychological scores and physiological signals from 19 participants (14 males and 5 females) who watched eight video clips. This dataset can be used to explore the instantaneous relationship between ECG and RES waveforms and anxiety-inducing video clips to uncover and evaluate the latent characteristic information contained in these biosignals

    Dataset of Psychological Scales and Physiological Signals Collected for Anxiety Assessment Using a Portable Device

    No full text
    Portable and wearable devices are becoming increasingly common in our daily lives. In this study, we examined the impact of anxiety-inducing videos on biosignals, particularly electrocardiogram (ECG) and respiration (RES) signals, that were collected using a portable device. Two psychological scales (Beck Anxiety Inventory and Hamilton Anxiety Rating Scale) were used to assess overall anxiety before induction. The data were collected at Simon Fraser University from participants aged 18–56, all of whom were healthy at the time. The ECG and RES signals were collected simultaneously while participants continuously watched video clips that stimulated anxiety-inducing (negative experience) and non-anxiety-inducing events (positive experience). The ECG and RES signals were recorded simultaneously at 500 Hz. The final dataset consisted of psychological scores and physiological signals from 19 participants (14 males and 5 females) who watched eight video clips. This dataset can be used to explore the instantaneous relationship between ECG and RES waveforms and anxiety-inducing video clips to uncover and evaluate the latent characteristic information contained in these biosignals

    Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals

    No full text
    Background: Assistive robotic hand orthoses can support people with sensorimotor hand impairment in many activities of daily living and therefore help to regain independence. However, in order for the users to fully benefit from the functionalities of such devices, a safe and reliable way to detect their movement intention for device control is crucial. Gesture recognition based on force myography measuring volumetric changes in the muscles during contraction has been previously shown to be a viable and easy to implement strategy to control hand prostheses. Whether this approach could be efficiently applied to intuitively control an assistive robotic hand orthosis remains to be investigated. Methods: In this work, we assessed the feasibility of using force myography measured from the forearm to control a robotic hand orthosis worn on the hand ipsilateral to the measurement site. In ten neurologically-intact participants wearing a robotic hand orthosis, we collected data for four gestures trained in nine arm configurations, i.e., seven static positions and two dynamic movements, corresponding to typical activities of daily living conditions. In an offline analysis, we determined classification accuracies for two binary classifiers (one for opening and one for closing) and further assessed the impact of individual training arm configurations on the overall performance. Results: We achieved an overall classification accuracy of 92.9% (averaged over two binary classifiers, individual accuracies 95.5% and 90.3%, respectively) but found a large variation in performance between participants, ranging from 75.4 up to 100%. Averaged inference times per sample were measured below 0.15 ms. Further, we found that the number of training arm configurations could be reduced from nine to six without notably decreasing classification performance. Conclusion: The results of this work support the general feasibility of using force myography as an intuitive intention detection strategy for a robotic hand orthosis. Further, the findings also generated valuable insights into challenges and potential ways to overcome them in view of applying such technologies for assisting people with sensorimotor hand impairment during activities of daily living.ISSN:1743-000

    Feasibility of force myography for the direct control of an assistive robotic hand orthosis in non-impaired individuals

    No full text
    Abstract Background Assistive robotic hand orthoses can support people with sensorimotor hand impairment in many activities of daily living and therefore help to regain independence. However, in order for the users to fully benefit from the functionalities of such devices, a safe and reliable way to detect their movement intention for device control is crucial. Gesture recognition based on force myography measuring volumetric changes in the muscles during contraction has been previously shown to be a viable and easy to implement strategy to control hand prostheses. Whether this approach could be efficiently applied to intuitively control an assistive robotic hand orthosis remains to be investigated. Methods In this work, we assessed the feasibility of using force myography measured from the forearm to control a robotic hand orthosis worn on the hand ipsilateral to the measurement site. In ten neurologically-intact participants wearing a robotic hand orthosis, we collected data for four gestures trained in nine arm configurations, i.e., seven static positions and two dynamic movements, corresponding to typical activities of daily living conditions. In an offline analysis, we determined classification accuracies for two binary classifiers (one for opening and one for closing) and further assessed the impact of individual training arm configurations on the overall performance. Results We achieved an overall classification accuracy of 92.9% (averaged over two binary classifiers, individual accuracies 95.5% and 90.3%, respectively) but found a large variation in performance between participants, ranging from 75.4 up to 100%. Averaged inference times per sample were measured below 0.15 ms. Further, we found that the number of training arm configurations could be reduced from nine to six without notably decreasing classification performance. Conclusion The results of this work support the general feasibility of using force myography as an intuitive intention detection strategy for a robotic hand orthosis. Further, the findings also generated valuable insights into challenges and potential ways to overcome them in view of applying such technologies for assisting people with sensorimotor hand impairment during activities of daily living

    Passive and Wireless All‐Textile Wearable Sensor System

    No full text
    Mobile health technology and activity tracking with wearable sensors enable continuous unobtrusive monitoring of movement and biophysical parameters. Advancements in clothing-based wearable devices have employed textiles as transmission lines, communication hubs, and various sensing modalities; this area of research is moving towards complete integration of circuitry into textile components. A current limitation for motion tracking is the need for communication protocols demanding physical connection of textile with rigid devices, or vector network analyzers (VNA) with limited portability and lower sampling rates. Inductor–capacitor (LC) circuits are ideal candidates as textile sensors can be easily implemented with textile components and allow wireless communication. In this paper, the authors report a smart garment that can sense movement and wirelessly transmit data in real time. The garment features a passive LC sensor circuit constructed of electrified textile elements that sense strain and communicate through inductive coupling. A portable, lightweight reader (fReader) is developed for achieving a faster sampling rate than a downsized VNA to track body movement, and for wirelessly reading sensor information suitable for deployment with a smartphone. The smart garment–fReader system monitors human movement in real-time and exemplifies the potential of textile-based electronics moving forward.ISSN:2198-384

    Passive and Wireless All‐Textile Wearable Sensor System

    No full text
    Abstract Mobile health technology and activity tracking with wearable sensors enable continuous unobtrusive monitoring of movement and biophysical parameters. Advancements in clothing‐based wearable devices have employed textiles as transmission lines, communication hubs, and various sensing modalities; this area of research is moving towards complete integration of circuitry into textile components. A current limitation for motion tracking is the need for communication protocols demanding physical connection of textile with rigid devices, or vector network analyzers (VNA) with limited portability and lower sampling rates. Inductor–capacitor (LC) circuits are ideal candidates as textile sensors can be easily implemented with textile components and allow wireless communication. In this paper, the authors report a smart garment that can sense movement and wirelessly transmit data in real time. The garment features a passive LC sensor circuit constructed of electrified textile elements that sense strain and communicate through inductive coupling. A portable, lightweight reader (fReader) is developed for achieving a faster sampling rate than a downsized VNA to track body movement, and for wirelessly reading sensor information suitable for deployment with a smartphone. The smart garment–fReader system monitors human movement in real‐time and exemplifies the potential of textile‐based electronics moving forward
    corecore